Расчет математического ожидания – это отличный способ определения того, является ли ставка прибыльной. Один математик даже использовал математическое ожидание для неоднократного выигрыша джек-пота лотереи. И хотя эта техника очень полезна, многие игроки незнакомы с ней.

Математическое ожидание – это способ измерения вероятности того или иного исхода в ситуациях, когда возможны два варианта исхода (например, орел или решка при подбрасывании монеты). При этом используется простая матрица решений, в которой оцениваются плюсы и минусы каждого из вариантов.

Эта техника помогает игрокам определить ожидаемую сумму выигрыша или проигрыша по конкретной ставке, при этом положительное математическое ожидание означает, что предложение является выгодным. В качестве примера возьмем национальную лотерею Великобритании: в ней отрицательное математическое ожидание в -0,50 означает, что теоретически игроки теряют 50 пенсов на каждом поставленном фунте стерлингов, то есть ставка с таким математическим ожиданием является невыгодной.

Как рассчитывать математическое ожидание

Формула расчета математического ожидания при проведении лотереи довольно проста. Умножьте вероятность выигрыша на сумму, которую можно выиграть по ставке, и вычтите вероятность выигрыша, умноженную на сумму, которую можно проиграть:

(сумма выигрыша по ставке x вероятность выигрыша) – (сумма проигрыша по ставке x вероятность проигрыша)

В качестве простого примера можно привести подбрасывание монеты, при котором имеется два варианта выигрыша. Допустим, вы поставили по 10 фунтов стерлингов на оба исхода с одинаковой вероятностью (вероятность 0,5 или же коэффициент 2,0 при использовании десятичных коэффициентов). В этом случае математическое ожидание для каждого исхода составит 0. Мы получили 0 потому, что вероятность каждого из исходов одинакова. То есть, если подбрасывать монету бесконечно долго, в теории вы не выиграете и не проиграете.

Но если допустить что, выигрыш в случае выпадения орла составит 11 фунтов стерлингов (то есть, вероятность 0,48 или же коэффициент 2,1 при использовании десятичных коэффициентов), то матрица изменится, и для ставки на орла математическое ожидание составит 50 пенсов. Это означает, что при постоянных ставках исключительно на выпадение орла можно ожидать прибыль в 50пенсов с каждых 10 фунтов стерлингов, поскольку используемые в этом примере шансы выше потенциальных шансов выпадения орла.

Поэтому, если вы обнаружили положительное математическое ожидание, можете смело делать ставки. Но не забывайте, что это работает только в долгосрочной перспективе, поскольку математическое ожидание является лишь теоретическим значением.

Лотерейная математика: выигрыш лотереи с помощью математического ожидания

Идея математического ожидания появилась еще в XVII веке в результате дискуссии между тремя выдающимися математиками о выигрышах при игре в кости. Один из них, Блез Паскаль, который позднее стал известен благодаря труду о биноминальном разложении (треугольник Паскаля), был первым, кто использовал идею математического ожидания, противопоставляя ее вмешательству Бога.

Много лет спустя румынский математик Стефан Мандель понял, как хорошо всем известное математическое ожидание работает в отношении лотерей, и использовал свои знания, чтобы получать преимущества при игре в лотерею.

На основе математического ожидания можно составить технико-экономическое обоснование проведения лотерей.

Чтобы выиграть джек-пот национальной лотереи Великобритании, необходимо угадать 6 из 49 номеров, то есть при 14 миллионах возможных комбинаций шанс выиграть составляет один к 14 миллионам. Отрицательное математическое ожидание в минус 50 пенсов на каждый поставленный фунт стерлингов в национальной лотерее Великобритании. Соответственно, чтобы игра в лотерею была прибыльной для игроков, выигрыш (джек-пот) должен быть намного больше суммы ставки (лотерейного билета). Но при этом лотерея – безрисковый способ пополнения правительством государственной казны, поэтому шансы на выигрыш обычно рассчитываются руководством лотереи таким образом, чтобы математическое ожидание было отрицательным.

И если составить рейтинг самых распространенных азартных игр от бинго до блек-джека с точки зрения математического ожидания, то крупные лотереи окажутся в самом его низу. Так, у национальной лотереи Великобритании математическое ожидание отрицательное и составляет минус 50 пенсов на каждый поставленный фунт стерлингов (то есть, -0,50). Вот почему иногда ее и называют способом непрямого налогообложения, а математика объясняет почему не везёт в лотерее. При этом люди с радостью продолжают покупать лотерейные билеты, даже если знают об отрицательном математическом ожидании лотереи. Их можно понять, ведь жертвуя 50 пенсами с каждого фунта стерлингов, они покупают удовольствие от азарта и получают шанс выиграть кучу денег, которые могут кардинально изменить их жизнь.

Тем не менее, существует и определенная особенность при подсчете математического ожидания для лотерей. Она заключается в том, что если в каком-либо розыгрыше джек-пот не был выигран, его сумма добавляется к джек-поту следующего розыгрыша. Таким образом сумма джек-пота аккумулируется и в определенной момент может достигнуть значения, при котором математическое ожидание станет уже положительным. Мандель понимал это преимущество и искал пути воспользоваться им.

В теории все просто: необходимо было дождаться достаточно большого джек-пота и поставить на все возможные комбинации. На практике же возникли серьезные сложности, поскольку для покупки билетов в местном магазинчике и заполнения всех возможных комбинаций номеров необходима уйма времени. Тем не менее, несмотря на необходимый объем работы, Мандель смог добиться успеха (и впоследствии еще не раз). Так что на вопрос, кто из математиков выигрывал в лотерею, есть ответ: Стефан Мандель. Средства, потраченные им на покупку необходимого количества билетов, были меньше суммы джек-пота, то есть он действительно получил прибыль (при этом не стоит забывать, что ему все равно повезло – он один поставил на выигрышную комбинацию, поэтому ему не пришлось делить выигрыш с кем-то еще).

Хорошим примером использования в своих целях положительного математического ожидания являются и случаи, когда так называемые «счетчики карт» при игре в блек-джек подсчитывают и запоминают вышедшие в отбой и еще играющие карты, получая при этом преимущество и обыгрывая казино.

Можно с уверенностью сказать, что среднестатистический игрок никогда не станет покупать 14 миллионов лотерейных билетов или учиться подсчитывать карты, но существуют две ситуации когда любой игрок может воспользоваться преимуществами положительного математического ожидания: букмекерские вилки и ставки на нишевые виды спорта.

Букмекерские вилки и положительное математическое ожидание

Букмекерская вилка – это разница коэффициентов различных букмекеров на одно и то же событие. Игроки могут использовать ее для создания искусственной таблицы ставок и, как следствие, положительного математического ожидания.

Ставки с использованием букмекерских вилок уже многие десятилетия являются успешным и законным способом получения прибыли и набирают все большую популярность. Такой способ действительно имеет большие преимущества, ведь он основывается на математическом расчете и не зависит от исхода игры или матча. Поэтому многие букмекеры стараются всеми возможными способами противодействовать игрокам, использующим букмекерские вилки. На этом фоне Pinnacle Sports положительно выделяется среди остальных, ведь он наоборот поддерживает таких игроков.

Неявное математическое ожидание

В то время как при ставках на букмекерские вилки используется явное положительное математическое ожидание (конкретные несоответствия коэффициентов у разных букмекеров), существуют и такие ситуации, когда математическое ожидание может быть неявным в результате различия в оценке. Серьезные игроки создают собственные системы оценки шансов и, как следствие, имеют собственную оценку шансов команд или игроков на победу. И если оценка игрока сильно отличается от оценки букмекера, может возникать положительное математическое ожидание.

Особенно часто такое происходит в нишевых видах спорта, когда разница в оценках игрока и букмекера наиболее заметна. В результате возникает матрица решений, в которой коэффициенты игрока лучше предлагаемых букмекером коэффициентов, что в длительной перспективе размещения ставок может принести вам прибыль.

Идея математического ожидания могла родиться в диспуте выдающихся математиков прошлого в попытке найти ответы на важнейшие вопросы мироздания, но сейчас ее можно отлично использовать в более приземленных целях. Это замечательный инструмент, позволяющий игрокам оценить прибыльность ставок. Если вы еще не пользовались математическим ожиданием, нет необходимости обращаться к матрице решений для обоснования его эффективности.

PinnacleSports